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Abstract

The infinite dilution activity coefficients (γi
∞) of a solute in a solvent are important data in

process separation calculations.  These values reflect the degree of non-ideal solution behavior

of the solute in the solvent.  This paper investigates the use of infinite dilution activity

coefficients in cubic equation of state mixing rules for the prediction of phase behavior at high

pressures.  A mixing rule recently developed by Twu and Coon (CEOS/AE Mixing Rules

Constrained by the vdW Mixing Rule and the Second Virial Coefficient, AIChE J., 42 (1996)

3212-3222) has been extended from infinite pressure to zero pressure.  The methodology for

extending the infinite-pressure Twu-Coon mixing rule was developed so that the zero-

pressure Twu-Coon mixing rule reproduces the excess Gibbs free energy, as well as liquid

activity coefficients of any activity models, with extremely high accuracy without requiring

any additional binary interaction parameters.  We compare the performance of this new

mixing rule with the MHV1 and Wong-Sandler mixing rules for its ability to use γi
∞ in the

prediction of high pressure phase behavior for strongly non-ideal systems.
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Introduction

The application of any cubic equation of state to systems containing highly non-ideal

components requires an appropriate mixing rule for the equation of state parameter a.  Huron

and Vidal [1] pioneered linking the equation of state parameter a to the excess Gibbs free

energy at infinite pressure.  However, their mixing rule has not become widely used because

the available excess Gibbs energy parameters at low pressure cannot be used in their mixing

rule.

Because of that, several authors have proposed different approaches to use directly the

existing liquid activity model parameters in equations of state.  Among them, two models have

been quite successful.  One is a zero-pressure model by Michelsen [2] and Dahl and Michelsen

[3] and the other is an infinite-pressure model by Wong and Sandler [4].  Both models can

directly use available activity coefficient model parameters from low-pressure data in their

mixing rules for predicting phase equilibria at high temperatures and pressures quite

successfully.  However, neither the zero-pressure model nor the infinite-pressure model can

reproduce accurately the GE model with which it is combined (Coutsikos et al. [5], Kalospiro

et al. [6]).

A methodology has been developed to extend the infinite-pressure Twu-Coon mixing rule

[7] to correctly reproduce the incorporated GE model without introducing any additional

parameters.  Due to this capability, the available activity coefficient models at low pressure

can be used directly in this new mixing rule.  The activity model requires binary interaction

parameters which are usually regressed from binary phase equilibrium data.  Reliable VLE

data are sometimes, however, not available for the system of interest.  In that case, the activity
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model parameters can be determined from γi
∞.   Owing to a number of new techniques

investigated in recent years, γi
∞ can be measured accurately and inexpensively.  If the γi

∞ data

are not available, group contribution methods such as UNIFAC can be used to estimate the

necessary values.  The γi
∞ can then be used to generate the parameters for the activity model,

which then can be incorporated into the mixing rule for the calculation of real solution

behavior over the whole composition range.

We compare the performance of the Wilson activity model on the prediction of phase

equilibria for non-ideal mixtures using two γi
∞ in our new mixing rule, MHV1, and Wong-

Sandler.

CEOS/AE Mixing Rule

A two-parameter cubic equation of state is considered here:

P RT
v b

a
v ub v wb

 =    
( )−

−
+ +( )

(1)

where P is the pressure, T is the absolute temperature, and v is the molar volume.  The

constants u and w are equation of state dependent (for the Soave-Redlich-Kwong equation

[8]: u=0, w=1).  The parameter a in eqn.(1) is a function of temperature and the parameter b

is assumed to be a constant for pure components.  The value of a(T) at temperatures other

than the critical temperature, ac, can be calculated from

a T T ac( ) =  ( ) α (2)

The alpha function, α(T) in eqn.(2), is a function only of reduced temperature, Tr=T/Tc.

Since the prediction of pure component vapor pressure must be of high accuracy for accurate

vapor-liquid calculations, we have chosen to use the alpha correlation of Twu et al. [9]:
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α = − −T er
N M L Tr

N M( ) ( )1 1 (3)

Eqn.(3) has three parameters, L, M, and N which are unique to each component and are

determined from the regression of pure component vapor pressure data.  The values for the

components used in this study are given in Table 1.

Twu and Coon [7] have related the excess Helmholtz free energy, AE, with respect to a van

der Waals fluid to the Helmholtz free energy departure function, ∆A, by the following:

A A A AE
vdw
E

vdw− = −∆ ∆ (4)

Eqn.(4) was used by Twu and Coon [7] to derive the following mixing rule for the cubic

equation of state mixture a and b parameters at infinite pressure:

A
RT

A
RT
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a
b

a
b

E
vdw

E

vdw

vdw

∞ ∞− = −




1

*

*

*

*
(5)

with the C1, avdw and bvdw being:

C
w u

w
u

1

1 1

1
= −

−
+
+





( )

ln (6)

a x x a avdw i j
ji

i j= ∑∑ (7)

( )b xx bi bjvdw i j
ji

= +∑∑ 









1

2
 (8)

AE
∞ and AE

∞vdw in eqn.(5) are the excess Helmholtz energy at infinite pressure evaluated

from a cubic equation of state using the complete mixing rules for its a and b parameters and

using the van der Waals mixing rules for its a and b parameters (avdw and bvdw), respectively.

If eqn.(4) is applied at zero pressure, instead of infinite pressure, an equation containing

liquid volume is obtained:
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A0
E and v0

*=v0/b are the excess Helmholtz energy and reduced liquid volume at zero

pressure.  As mentioned, the subscript vdw denotes that the properties are evaluated from the

cubic equation of state using the van der Waals mixing rule for its a and b parameters.  The

zero pressure volume is obtained from eqn.(1) by setting pressure equal to zero and selecting

the smallest root:

v
a
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u w u w
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Eqn.(10) has a root as long as

( ) ( )( )a
b

u w u w
*

* ≥ + + + + +2 2 1 1 (11)

Eqns.(9) and (10) represent an exact model for a new mixing rule.  However, because the

equation of state parameter a*/b* and the zero pressure liquid volume are interrelated by

eqns.(9) and (10), the exact model does not permit explicit solution of eqn.(9) for a*/b* and an

iterative technique is required for the solution.  If eqns.(9) and (10) are used to solve for a*/b*,

the resulting new mixing rule will give an exact match between the excess Helmholtz free

energy of the equation of state at zero pressure and that of the incorporated excess Gibbs free

energy model.  Nevertheless, the non-explicit nature of the expression for the mixing rule

becomes cumbersome in the evaluation of thermodynamic properties such as fugacity
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coefficients from the equation of state.  This paper presents a methodology to overcome this

obstacle to obtain an explicit expression for this new mixing rule.

A variety of alternatives have been proposed to simplify the exact model so that the

equation of state parameters, a and b, can be explicitly expressed (Michelsen [2]; Dahl and

Michelsen [3]).  However, these modifications of the exact model sacrifice to some extent the

quality of the match between the equation of state and the GE model.  For example, the

MHV1 model developed by Michelsen [2] can be alternately derived from our new mixing

rule by assuming v0
* is a constant (1.23547 for SRK and 1.22756 for PR), instead of solving

for it from eqn.(10).  This means that the MHV1 model assumes that the ratio of the zero

pressure liquid volume to the close packing parameter b is the same for the mixture and for all

pure components.  This is the main reason why the MHV1 model performs poorly in

reproducing the behavior of the GE model when applied to systems either with components

that are different in size or where the value of v0
* of the system is not close to the fixed values

given above.

In this paper, v0
* will not be assumed to be constant.  We propose instead that the ratio of

the zero pressure liquid volume to the close packing parameter b of the system, v0
*, be

assumed to be the same as that of the van der Waals fluid, v0
*

vdw.  Using eqns.(7) and (8) for

the parameters a and b in eqn.(10), v0
*

vdw can be readily calculated from the equation.

Eqn.(10) is used to calculate v0
*

vdw for both the mixture and the pure components.  Eqn.(9)

can then be simplified to

A
RT

A
RT

b
b

C
a
b

a
b
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vdw vdw vdw

vdw
v

0 0
0− = + −
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with the constant Cv0 being:

C
w u

v +w
v u

v
vdw

0

1 0

0

= −
− +





( )

*

*
ln (13)

Since the equation of state parameters, a and b, are pressure independent, these two

parameters can be canceled out from eqns.(5) and (12) to give the inter-relationship of AE

between infinite pressure and zero pressure as:
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Substituting eqn.(14) into the mixing rule proposed by Twu and Coon [7] results in a new

and explicit mixing rule in terms of AE
0 at zero pressure:
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As mentioned above, A0
E

vdw in eqns.(15) and (16) is the excess Helmholtz energy at zero

pressure evaluated from a cubic equation of state using the mixing rules for its avdw and bvdw

parameters, as given in eqns.(7) and (8).  The zero pressure volume v0
*

vdw=v0vdw/b is obtained

from eqn.(10) by substituting avdw and bvdw for the a and b parameters.

There are some nice features of this new mixing rule.  The new mixing rule reduces to the

van der Waals mixing rule when A0
E is equal to A0

E
vdw.  The mixing rule satisfies the quadratic

composition dependence of the second virial coefficient boundary condition.  The most
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important aspect is that the mixing rule is density dependent in an explicit form which allows

the mixing rule to reproduce accurately the incorporated GE model.

Incorporation of the Wilson Activity Model into the New Mixing Rule

Since A0
E in eqns.(15) and (16) is at zero pressure, its value is identical to the excess Gibbs

free energy GE.  Therefore, any activity model such as the Wilson equation can be used

directly for the excess Helmholtz free energy expression A0
E in these two equations.

For a solution of n components, Wilson’s equation is:

G
RT

x x
E

i j ij

nn

ji

= −








∑∑ ln Λ (17)

where

( )Λi j
j

i
i j

v
v

exp A T=




 − / (18)

and T is temperature in kelvin.  In Wilson’s derivation, GE is related to the pure-component

molar volume vi, which is listed in Table 1.  Wilson’s equation has two adjustable parameters,

Aij and Aji.  These two adjustable parameters per binary pair can be uniquely determined from

two infinite dilution activity coefficients.

These values of Aij and Aji are then used at all temperatures.  Table 2 gives the values of

these Wilson binary interaction parameters converted from the  γi
∞ for the selected systems.

In this work, we have considered eight binary highly non-ideal mixtures which are traditionally

described by liquid activity models.  They are listed in Table 2.  In order to obtain liquid-like

values for v0
* at zero pressure from eqn.(10), we limit our analysis to systems with

components and temperatures such that a*/b* is larger than the limiting value of 5.82843 for

SRK as given by eqn.(11).
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The mixing rule for the parameter b as given by eqn.(15) forces the mixing rule to satisfy

the quadratic composition dependence of the second virial coefficient.  Alternatively, the

conventional linear mixing rule could be chosen for the b parameter (i.e. ignoring the second

virial coefficient boundary condition):

( )b x x bi bji j
ji

= +∑∑ 









1

2
(19)

We will examine the capability of the mixing rule for phase equilibrium prediction with and

without the second virial coefficient constraint on the b parameter.  We will also compare our

new mixing rule with two of the most successful and widely used mixing rules, MHV1

(Michelsen [2]) and the mixing rule proposed by Wong and Sandler [4].  Wong and Sandler

assumed that the excess Helmholtz free energy at infinite pressure can be approximated by the

excess Gibbs free energy at low pressure:

AE(T, x, P=∞)= AE(T, x, P=low)= GE(T, x, P=low) (20)

The Wong-Sandler approximation will be tested in this comparison to see how well the

assumption in eqn.(20) stands.  As stated before, one of our objectives in this paper is to test

the ability of different mixing rules to reproduce the incorporated GE model.  In this work, we

are going to perform rigorous tests of the capability of reproducing the GE model using the

equation of state combined with our new mixing rules.  We use ‘WS’ to refer to the Wong-

Sandler mixing rules.  ‘TCB’ is used to represent the mixing rule developed by us in this work

(eqns.15 and 16), and ‘TCB(0)’ to eqns.(16) and (19).  The zero in the TCB parenthesis

means no second virial coefficient constraint.  The accuracy of reproducing the activity

coefficients of component i, γi (%) in terms of average absolute deviation percentage
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(AAD%), from the incorporated GE model using these different mixing rules is given in Table

2.  Similarly, the accuracy of the VLE prediction from the different mixing rules, which is also

in terms of AAD% in bubble point pressure and k-values of component 1 and 2, is also

presented in Table 2.

Examining the accuracy of reproducing activity coefficients as given in Table 2, the Wong-

Sandler mixing rule gives the largest deviation for all the systems in this comparison.  The

inability to match the GE derived from the equation of state with that from the incorporated

GE model invalidates the basic assumption behind the Wong-Sandler mixing rule.  The

predictions from the Wong-Sandler mixing rule without using any additional binary interaction

parameters is unacceptable.  Table 2 contains the results for the systems acetone-benzene and

acetone-methanol.  The zero pressure model, MHV1, closely reproduces the GE model it is

combined with for systems where the liquid volume of the components is close to the fixed

value chosen by Michelsen [2].  It is not surprising that if the liquid volume of the system is

not close to the fixed constant, the GE model is not reproduced by the equation of state using

the MHV1 mixing rule.  These results are in agreement with a statement by Kalospiro et al.

[7], although we have a different explanation for it.  The results shown in Table 2 illustrate

that our new mixing rule reproduces the GE model almost exactly.  The errors in the

reproduction of the activity coefficients for these systems are minimal from our mixing rule.

For VLE predictions, our new mixing rule gives consistent results and in general provides

good agreement between the experimental data and the predictions over a wide range of

temperatures and pressures using only information on the infinite dilution activity coefficients.

It was somewhat surprising that good agreement was also obtained from MHV1, although it
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cannot reproduce accurately the incorporated liquid activity coefficients.  This unexpected

result from MHV1 might come from some mutual cancellation of errors, but we do not know

at this time.  Again, the worst predictions are obtained from the Wong-Sandler mixing rule

because of its inability to match the GE model.

Finally, as we mentioned, we want to investigate the impact on phase equilibrium

prediction of the mixing rule with and without the second virial coefficient condition

constraint.  Reviewing the results shown in Table 2, they show that our mixing rule yields

almost identical results either with or without second virial coefficient condition constraint.

This indicates that the second virial coefficient constraint has no effect on the phase

equilibrium prediction.  Theoretically, it would be nice to have the mixing rule satisfy the

quadratic composition dependence of the second virial coefficient boundary condition.

Practically, it is simpler just to use the conventional linear mixing rule for the b parameter.

The same quality of phase behavior will be predicted from both cases.

Conclusion

This work shows that the  γi
∞ are useful for the calculation of real solution behavior over

the whole composition range.  The Wilson equation with the two parameters determined from

two infinite dilution activity coefficients adequately represents the vapor-liquid equilibria for

the entire composition range.

We have successfully extended the Twu-Coon Mixing Rule from infinite pressure to zero

pressure.  We have demonstrated that CEOS/AE models such as the Wong-Sandler mixing

rule do not reproduce the GE models with which they are associated.  We show why the zero

pressure models do not reproduce exactly the GE models at low pressure and reveal that
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approximate reproduction is feasible for MHV1 only for systems with liquid volumes close to

the assumed constant value.  On the other hand, the new model we developed in this work

accurately reproduces the activity coefficients of the GE model.
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Table 1

The L, M, and N parameters of the temperature-dependent α function given by eqn.(3) for

pure components used with the SRK cubic equation of state and their molar volumes

Component Tc(K) Pc(bar) L M N v(cc/mol)

n-pentane 469.70 33.70 0.379229 0.841706 1.82331 116.10

n-hexane 507.85 30.31 0.158080 0.872819 3.84418 131.79

n-heptane 540.16 27.36 0.340339 0.844963 2.38332 147.58

cyclohexane 553.58 40.73 0.245880 0.845046 2.25895 108.74

benzene 562.16 48.98 0.163664 0.860016 2.98498 89.33

acetone 508.20 47.01 0.479844 0.870627 1.79010 74.06

methanol 512.64 80.97 0.690551 0.911298 1.96941 40.80

ethanol 513.92 61.48 1.07646 0.964661 1.35369 58.78

water 647.13 220.55 0.413297 0.874988 2.19435 18.14
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Table 2
Wilson Interaction Parameters and Results of the Prediction in terms of Average Absolute
Deviation Percentage (AAD%) in Activity Coefficients, Bubble point Pressure and K-values

aethanol(1)/n-heptane(2) from 30.12 to 70.02 C; I/2e/377, 379; I/2c/457, 458
A

12
=1000.13, A

21
=208.890 (γ

1

∞ = 23.98, γ
2

∞ = 12.39)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 17.81 16.35 12.32 9.76 18.60

MHV1 3.41 3.76 1.10 1.07 1.86

TCB 0.10 0.05 0.91 1.07 1.65

TCB(0) 0.07 0.04 0.89 1.09 1.68

amethanol(1)/cyclohexane(2) from 25 to 55 C; I/2a/242; I/2c/208, 209
A

12
=1073.87, A

21
=333.799 (γ

1

∞ = 33.08, γ
2

∞ = 20.64)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 17.02 15.11 15.46 12.32 18.33

MHV1 3.15 3.59 3.33 2.49 3.42

TCB 0.17 0.13 4.21 3.08 4.20

TCB(0) 0.13 0.10 4.23 3.03 4.15

a methanol(1)/benzene(2) from 25 to 90 C; I/2c/188; I/2a/207,210,216,217,228
A

12
=965.095, A

21
=141.820 (γ

1

∞ = 23.79, γ
2

∞ = 8.79)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 15.70 13.46 9.27 9.53 9.65

MHV1 3.04 2.90 4.23 6.10 5.08

TCB 0.18 0.14 3.55 5.23 4.32

TCB(0) 0.14 0.11 3.51 5.25 4.31

a acetone(1)/benzene(2) from 25 to 45 C; I/3+4/194, 203, 208
A

12
=208.602, A

21
=-52.0233 (γ

1

∞ = 1.69, γ
2

∞ = 1.51)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 3.65 3.66 2.34 2.03 4.04

MHV1 0.73 0.58 0.83 1.06 1.73

TCB 0.01 0.01 1.03 1.03 1.71

TCB(0) 0.01 0.01 0.78 1.03 1.71

a data taken from DECHEMA Chemistry Data Series by Gmehling, Onken, and Arlt; numbers
corresponding to volume/part/page.
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Table 2(continued)
Wilson Interaction Parameters and Results of the Prediction in terms of Average Absolute
Deviation Percentage (AAD%) in Activity Coefficients, Bubble point Pressure and K-values

acetone(1)/ethanol(2) from 32 to 48 C; I/2a/323, 324, 325
A

12
=121.982, A

21
=132.022 (γ

1

∞ = 2.26, γ
2

∞ = 1.95)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 4.25 4.26 3.17 2.71 2.34

MHV1 1.75 1.37 1.34 1.78 2.49

TCB 0.01 0.01 1.23 0.83 1.58

TCB(0) 0.01 0.01 1.23 0.83 1.57

a acetone(1)/methanol(2) from 45 to 55 C; I/2a/75, 80, 81
A

12
=-33.5257, A

21
=250.052 (γ

1

∞ = 1.94, γ
2

∞ = 1.78)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 3.11 3.62 2.39 2.50 3.44

MHV1 0.74 0.45 0.65 1.01 0.96

TCB 0.00 0.00 0.71 0.95 1.00

TCB(0) 0.00 0.00 0.71 0.95 1.00

aethanol(1)/benzene(2) from 25 to 55 C; I/2a/398, 407, 415, 417, 418, 421, 422
A

12
=668.863, A

21
=71.8375 (γ

1

∞ = 10.05, γ
2

∞ = 4.47)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 12.40 10.33 10.72 13.42 10.50

MHV1 2.62 2.60 2.60 4.26 3.13

TCB 0.13 0.10 3.40 4.84 3.73

TCB(0) 0.10 0.08 3.41 4.83 3.72

amethanol(1)/n-hexane(2) from 25 to 45 C; I/2c/219; I/2a/252
A

12
=1166.31, A

21
=438.080 (γ

1

∞ = 39.17, γ
2

∞ = 35.78)

mixing rule γγ1(%) γγ2(%) P(%) k1(%) k2(%)

WS 17.18 14.37 16.49 20.77 19.05

MHV1 2.44 4.06 2.72 2.72 2.53

TCB 0.11 0.05 2.40 3.93 3.64

TCB(0) 0.09 0.04 2.45 3.94 3.65

a data taken from DECHEMA Chemistry Data Series by Gmehling, Onken, and Arlt; numbers
corresponding to volume/part/page.


